Контакты

тел./факс
(057) 771-06-73
(057) 751-64-68
(050) 220-32-44
(096) 322-41-22

Адрес: ул. Кузнечная, 17
г. Харьков, 61003

E-mail: energointel@list.ru
Директор: Шаповалов Владимир Николаевич

История развития электрических источников света

Электрические источники света — детище XIX и главным образом XX века. Наиболее быстрое развитие они получили в последние 50 — 60 лет. Назовем в хронологическом порядке важнейшие события на пути совершенствования электрических источников света, позволяющие проследить развитие научной и конструкторской мысли.


В 1802 г. русский физик В. В. Петров открыл явление электрической дуги между угольными электродами и отметил ее световые свойства, подсказав тем самым возможность использования этого явления для целей освещения. Вскоре после открытия в 1800 г, теплового действия электрического тока начались опыты по получению света путем накаливания проводников током. Многочисленные работы в этой области многие годы не давали удовлетворительных результатов. Лишь в 1872 г. успех сопутствовал русскому изобретателю и конструктору А. Н. Лодыгину, который предложил источник света, в принципе схожий с современной лампой накаливания (рис. 1).


Он заключил в стеклянный баллон угольный стерженек, выпиленный из реторного угля (полученного при сухой перегонке дерева), и пропустил через него ток. Уголек разогревался и ярко светился. Кислород внутри баллона поглощался за счет сгорания части угля (вакуумной техники тогда не было). Оставшаяся часть угля относительно долго работала, излучая свет. Позже лампа была Усовершенствована В. Ф. Дидрихсоном (рис. 2), который разместил в баллоне несколько угольных стерженьков, автоматически переключавшихся по мере перегорания.



В 1876 г. русский изобретатель П. Н. Яблочков использовал для получения света электрическую дугу. В лампе Яблочкова, которая вошла в историю под названием «свеча Яблочкова» и представляла собой открытую угольную дугу, в качестве электродов были применены два угольных стержня, расположенных параллельно и разделенных промежутком из смеси каолина с магнезией.


В 1879 г. американский изобретатель Т.А. Эдисон усовершенствовал лампу А. Н. Лодыгина, применив для тела накала угольный волосок, полученный обугливанием длинных и тонких бамбуковых волокон, и откачав из баллона воздух (рис. В.2,а). Конструкция лампы оказалась достаточно технологичной, что позволило организовать промышленное производство ламп с угольной нитью (рис. В. 2,б). Лампы накаливания начинают широко внедряться в практику электрического освещения во многих странах, в том числе в России.

В 1890 г. А. Н. Лодыгин демонстрировал лампу с телом накала в виде нити из тугоплавкого металла — молибдена. Эта идея оказалась очень плодотворной. Для изготовления тела накала пытались применять платину, осмий, цирконий, тантал и, наконец, вольфрам, который вытеснил впоследствии все другие металлы. Первые образцы ламп с применением вольфрама появились в 1903 г., в 1906 г. начался промышленный выпуск вакуумных ламп с прямой вольфрамовой тянутой нитью (рис. 3).


В 1913 г. американский ученый И. Ленгмюр предложил наполнять лампу накаливания нейтральным газом и применять спирализованное тело накала вместо нитевидного. Эти меры позволили уменьшить температурное распыление вольфрамовой проволоки и за счет этого увеличить продолжительность горения (срок службы) лампы. И. Ленгмюру принадлежит теоретическая и практическая разработка спиральных вакуумных и газополных ламп (рис. 4,а, б).



В 1914 г. были изобретены газополные лампы накаливания с биспиральным (дважды спирализованным) телом накала. Но они долго не получали практического применения из-за сильного провисания тела накала. Только в 1935 г., после разработки технологии изготовления формоустойчивого вольфрама, началось их массовое производство. С 1936 г. в качестве газов-наполнителей лампы стали применять криптон (рис. В.4,е) и ксенон.


Практическое использование свечения электрического разряда в газе для целей освещения началось в 1893 г., когда американский инженер Ф. Мур предложил конструкции светящихся трубок, наполенных разреженными газами (азот и углекислота). Этому событию предшествовали исследования многих ученых в области создания источников тока, получения вакуума, изучения свойств и разновидностей газового разряда. В 1910 г. для светящихся трубок стали применять неон, аргон и другие газы, что позволило упростить их конструкцию. Параллельно создавались лампы и светящиеся трубки с парами металлов. Первой такой лампой, использующей свечение ртутных паров, была ртутная лампа И. Репьева, предложенная в 1879 г. В 1900—1901 гг. в эти лампы были введены конструктивные усовершенствования, которые сделали их Удобными для практического применения. В результате начатых в 1904 г. работ, связанных с использованием для ртутных ламп кварцевых колб, была создана надежная конструкция ламп с металлическими вводами (1912-1913 гг.) и твердыми оксидными катодами (1930-1932 гг.). Эти лампы были интенсивными источниками излучения в ультрафиолетовой области спектра.

На рис. 5 приведены два типа газоразрядных ламп высокого и сверхвысокого давления. Первая (типа ДРТ), в цилиндрической колбе, является эффективным источником ультрафиолетового излучения, а вторая (типа ДРШ), с короткой дугой в шаровой кварцевой колбе, наполненная ртутными парами, обладает высокой яркостью, в десятки и сотни раз превосходящей яркость ламп накаливания. В 1919г. появились и начали распространяться лампы с парами натрия низкого давления. В конце 30-х годов начались исследования по созданию интенсивных источников света с малой длительностью свечения (импульсные лампы). Однако, несмотря на значительно более высокий, чем у ламп накаливания, КПД, указанные выше газоразрядные лампы не нашли широкого применения для общего освещения, так как они имеют линейчатый спектр излучения и сильно искажают цвет освещаемых предметов.


В 1931 г. академик С. И. Вавилов предсказал возможность применения в газоразрядных лампах люминофоров для преобразования ультрафиолетового излучения ртутного разряда в видимое излучение с непрерывным спектром. Эта идея была реализована в люминесцентных лампах низкого давления (рис. 6,а), массовый выпуск которых начался в СССР в 1938 г.



Они стали первыми газоразрядными источниками света, которые наряду с лампами накаливания нашли массовое применение для освещения. Этому способствовали высокая эффективность люминесцентных ламп (в настоящее время световая отдача в 2 — 5 и срок службы в 5 — 15 раз выше, чем у ламп накаливания), а также технологичность конструкции, позволившая организовать крупное высокомеханизированное производство. Широкое распространение люминесцентных ламп подняло освещение промышленных и общественных зданий на принципиально новый качественный уровень.



На рис. В. 7 показаны некоторые типы люминесцентных ламп (прямые, желобковые, кольцевые, U-образ-ные, W-образные).


Начиная с 1951 г. начинают быстро распространяться дуговые ртутно-кварцевые лампы высокого давления с нанесенным на внутреннюю стенку внешней колбы люминофором — лампы ДРЛ (рис.В.6,б). Их световая отдача достигает сейчас 60 лм/Вт, а срок службы 12—15 тыс. ч. Производство этих ламп хорошо механизировано.


1959 г. ознаменовался крупным событием, открывшим новую страницу в развитии тепловых источников света, были созданы галогенные лампы накаливания в кварцевой колбе. Введение галогенов (например, йода) в лампу обеспечивало при определенных условиях обратный перенос испарившихся частиц вольфрама со стенок колбы на тело накала. При этом колба в процессе работы лампы остается прозрачной, световой поток — более стабильным, что позволяет существенно уменьшить размеры лампы по сравнению с обычными лампами той же мощности. Относительно малые размеры этих ламп и высокая прочность их кварцевых оболочек позволили повысить давление наполняющей лампы среды до 4 — 5*105 Па (3000—4000 мм рт. ст.) и тем самым существенно увеличить срок службы галогенных ламп (примерно в 2 раза) по сравнению с обычными лампами накаливания. В СССР в настоящее время создано и выпускается свыше 100 типоразмеров галогенных ламп накаливания, используемых для инфракрасного нагрева, прожекторного освещения, кино-, теле-и фотосъемок, автотранспорта, оптических приборов и других целей (рис. В.8).



Изобретение галогенных ламп накаливания навело на мысль использовать циклы в парах простейших химических соединений в газоразрядных лампах. Это позволяет создать лампы, сочетающие высокую световую отдачу и хорошую цветопередачу, присущие люминесцентным лампам, с высокой мощностью излучения, которой отличаются ртутные лампы высокого давления. За последние 10-15 лет много сделано для практической реализации этой идеи. Уже начали выпускаться так называемые ме-таллогалогенные дуговые лампы (типа ДРИ), т. е. ртутные лампы высокого давления с введением йодидов натрия, таллия, индия и др. Световая отдача этих ламп достигает 80—90 лм/Вт, что в 1,5—2 раза больше, чем у аналогичных ламп типа ДРЛ.


Важным достижением последнего времени является разработка и освоение производства натриевых ламп высокого давления (рис. В.9).

Создание таких ламп (типа ДНаТ), имеющих световую отдачу до 110—120 лм/Вт, срок службы около 20 тыс. ч и удовлетворительную цветопередачу, стало возможным в связи с созданием свето-' прозрачных трубок-колб из поликристаллической окиси алюминия. Такие колбы могут работать при более высокой температуре, чем кварцевые, и хорошо противостоят воздействию разряда в парах щелочных и щелочноземельных металлов.

Развитие источников света, совершенствование конструкций происходили на основе использования достижений фундаментальных наук, в тесной связи с развитием других отраслей науки и техники. Важнейшими научными предпосылками явилось открытие теплового действия электрического тока (1800 г.), открытие электрической дуги и возможности получения от нее света (1802 г.), исследование и формулирование законов теплового излучения тел (вторая половина XIX в.), развитие теории светящегося электрического разряда в газе (работы английского физика М. Фарадея, начатые в 1838 г.), развитие исследований в области техники освещения и облучения. К главным техническим предпосылкам развития источников света можно отнести изобретение гальванического элемента, электрификацию, создание вакуумной техники, получение вольфрамовой проволоки, развитие техники обработки стекла, получение кварцевого стекла, организацию промышленного получения азота, аргона, криптона и ксенона и снижение их стоимости и др. Отметим основные пути и направления дальнейшего развития электрических источников света. Главная проблема — повышение эффективности преобразования электрической энергии в световую, увеличение световой отдачи источников света. В тепловых источниках света это может быть достигнуто за счет отыскания новых материалов для тела накала, совершенствования конструкции тел накала и оптимизации окружающих их сред, дальнейшего исследования возвратных (регенеративных) циклов и совершенствования на этой основе галогенных ламп накаливания, развития работ по применению антистоксовых люминофоров в лампах накаливания и др.

Важными научно-техническими задачами в области газоразрядных ламп являются улучшение цветности натриевых ламп высокого давления; повышение срока службы ламп типа ДРИ; повышение стабильности светового потока практически всех типов газоразрядных ламп и прежде всего люминесцентных ламп низкого давления; создание люминесцентных ламп с улучшенной цветопередачей и в колбах специальной формы для жилых помещений; развитие люминесцентных ламп повышенной интенсивности; создание безбалластных газоразрядных ламп; расширение ассортимента ламп типов ДРЛ, ДРИ, ДНаТ и др.

Требование повышения эффективности преобразования электрической энергии в световую не является абсолютным. На него накладываются Ограничения в связи с необходимостью обеспечить разумную долговечность источников, необходимый спектральный состав излучения, достаточно низкую стоимость ламп, удобство их эксплуатации в осветительных приборах и т. п. Поэтому оценка эффективности источников света как преобразователей энергии должна осуществляться по критериям, учитывающим эти ограничения. В области создания таких критериев сделано уже немало.

 

 

 
MyCounter - счётчик и статистика .